题目:Interpolatory refinable functions and quasi-stationary subdivision schemes
主讲人:韩斌
时间:2024-10-25 09:00
地点:#腾讯会议:827-610-658
举办部门:数学与计算机学院
讲座要点:
Interpolation is one of the extensively studied problems in approximation theory. In this talk, we are interested in refinable functions which have the generalized interpolation property. The Daubechies orthogonal wavelets are derived from the classical interpolating refinable functions, which are special cases of the notion of generalized interpolating refinable functions. In this talk, we shall completely characterize a generalized interpolating refinable function in terms of its mask. More interestingly, such generalized interpolating refinable functions have a close connection to n_s-step interpolatory quasi-stationary subdivision schemes, which have never appeared in the literature yet. Our second result will characterize the convergence of quasi-stationary subdivision schemes. Examples will be given to illustrate their applications to computer aided geometric design (CAGD).
主讲人简介:
加拿大阿尔伯塔大学数学与统计科学系的终身教授,主要研究方向包括小波变换、机器学习、图像处理等。 毕业于复旦大学数学系应用数学专业,并在中科院数学研究院获得硕士学位,后在加拿大阿尔伯塔大学获得博士学位。曾在美国俄克拉荷马州立大学担任访问助理教授,并在普林斯顿大学进行博士后研究,合作导师是小波分析的主要创始人之一Ingrid Daubechies教授。已在《Mathematics of Computation》《SIAM Journal on Math. Analysis》《Applied and Computational Harmonic Analysis》等权威杂志上发表近112篇论文,并出版了一部专著。他还担任多个国际学术刊物的编委,并多次受邀在国际学术会议上做特邀大会报告。
韩斌教授的学术成就和贡献主要体现在小波理论及其在图像处理中的应用。他在小波变换、机器学习、图像处理等领域取得了显著成果,特别是在定向紧框架(小波的推广)及其在图像处理中的应用方面。他的研究成果在《Applied and Computational Harmonic Analysis》《Journal of Approximation Theory》等国际学术刊物上发表,并多次在国际会议上做特邀报告。